skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fu, Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 5, 2026
  2. Free, publicly-accessible full text available March 28, 2026
  3. We present methods and applications for the development of digital twins (DT) for urban traffic management. While the majority of studies on the DT focus on its “eyes,” which is the emerging sensing and perception like object detection and tracking, what really distinguishes the DT from a traditional simulator lies in its “brain,” the prediction and decision making capabilities of extracting patterns and making informed decisions from what has been seen and perceived. In order to add value to urban transportation management, DTs need to be powered by artificial intelligence and complement with low-latency highbandwidth sensing and networking technologies, in other words, cyberphysical systems (CPS). We will first review the DT pipeline enabled by CPS and propose our DT architecture deployed on a real-world testbed in New York City. This paper can be a pointer to help researchers and practitioners identify challenges and opportunities for the development of DTs; a bridge to initiate conversations across disciplines; and a road map to exploiting potentials of DTs for diverse urban transportation applications. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Free, publicly-accessible full text available November 1, 2025
  5. Recent research has highlighted the effectiveness of advanced building controls in reducing the energy consumption of heating, ventilation, and air-conditioning (HVAC) systems. Among advanced building control strategies, deep reinforcement learning control (DRL) shows the potential to achieve energy savings for HVAC systems and has emerged as a promising strategy. However, training DRL requires an interactive environment for the agent, which is challenging to achieve with real buildings due to time and response speed constraints. To address this challenge, a simulation environment serving as a training environment is needed, even though the DRL algorithm does not necessarily need a model. The error between the model and the real building is inevitable in this process, which may influence the efficiency of the DRL controller. To investigate the impact of model error, a virtual testbed was established. A high- fidelity Modelica-based model is developed serving as the virtual building. Three reduced-order models (ROMs) (i.e., 3R2C, Light Gradient Boosting Machine (LightGBM) and artificial neural network (ANN) models) were trained with the historical data generated from the virtual building and were embedded in the training environments of DRL. The sensitivity of ROMs and the Modelica model to random and periodical actions were tested and compared. Deploying the policy trained based on a ROM-based environment, which stands for a surrogate model in reality, into the Modelica-based virtual building testing environment, which stands for real-building, is a practical approach to implementing the DRL control. The performance of the practical DRL controller is compared with rule-based control (RBC) and an ideal DRL controller which was trained and deployed both in the virtual building environment. In the final episode with best rewards of the case study, the 3R2C, LightGBM, and ANN-based DRL outperform the RBC by 7.4%, 14.4%, and 11.4%, respectively in terms of the reward, comprising the weighted sum of energy cost, temperature violations, and the slew rate of the control signal, but falls short of the ideal Modelica-based DRL controller which outperforms RBC by 29.5%. The DRL controllers based on data-driven models are highly unstable with higher maximum rewards but much lower average rewards which might be caused by the significant prediction defect in certain action regions of the data-driven model. 
    more » « less